Tuning Properties of MT and MSTd and Divisive Interactions for Eye-Movement Compensation
نویسندگان
چکیده
The primate brain intelligently processes visual information from the world as the eyes move constantly. The brain must take into account visual motion induced by eye movements, so that visual information about the outside world can be recovered. Certain neurons in the dorsal part of monkey medial superior temporal area (MSTd) play an important role in integrating information about eye movements and visual motion. When a monkey tracks a moving target with its eyes, these neurons respond to visual motion as well as to smooth pursuit eye movements. Furthermore, the responses of some MSTd neurons to the motion of objects in the world are very similar during pursuit and during fixation, even though the visual information on the retina is altered by the pursuit eye movement. We call these neurons compensatory pursuit neurons. In this study we develop a computational model of MSTd compensatory pursuit neurons based on physiological data from single unit studies. Our model MSTd neurons can simulate the velocity tuning of monkey MSTd neurons. The model MSTd neurons also show the pursuit compensation property. We find that pursuit compensation can be achieved by divisive interaction between signals coding eye movements and signals coding visual motion. The model generates two implications that can be tested in future experiments: (1) compensatory pursuit neurons in MSTd should have the same direction preference for pursuit and retinal visual motion; (2) there should be non-compensatory pursuit neurons that show opposite preferred directions of pursuit and retinal visual motion.
منابع مشابه
Direction and speed tuning to visual motion in cortical areas MT and MSTd during smooth pursuit eye movements.
When tracking a moving target in the natural world with pursuit eye movement, our visual system must compensate for the self-induced retinal slip of the visual features in the background to enable us to perceive their actual motion. We previously reported that the speed of the background stimulus in space is represented by dorsal medial superior temporal (MSTd) neurons in the monkey cortex, whi...
متن کاملResponses of MSTd and MT neurons during smooth pursuit exhibit similar temporal frequency dependence on retinal image motion.
When our eyes are in constant motion, the world around us remains perceptually stable; although eye movements produce slips of the visual scene on our retinae. In our previous study, we suggested that visual motion in space is served by neurons, which compensate retinal-image motion due to pursuit eye movements, in the dorsal part of the medial superior temporal (MSTd) area. Additionally, neuro...
متن کاملA neural model of motion processing and visual navigation by cortical area MST.
Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to em...
متن کامل3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code.
UNLABELLED Neurons in the dorsal subregion of the medial superior temporal (MSTd) area of the macaque respond to large, complex patterns of retinal flow, implying a role in the analysis of self-motion. Some neurons are selective for the expanding radial motion that occurs as an observer moves through the environment ("heading"), and computational models can account for this finding. However, am...
متن کاملPursuit speed compensation in cortical area MSTd.
When we move forward the visual images on our retinas expand. Humans rely on the focus, or center, of this expansion to estimate their direction of self-motion or heading and, as long as the eyes are still, the retinal focus corresponds to the heading. However, smooth pursuit eye movements add visual motion to the expanding retinal image and displace the focus of expansion. In spite of this, hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015